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3 Year 12 Mathematics: Specialist 3C/3D 2011 Section One

1.  [5marks: 2, 3]

A complex number, z=a — i, where a is a real number.

(a) Give iz inrectangular form.

(b) Evaluate a if £=8+6i

2. [4 marks]

Sketch, on the complex plane provided below, the region defined by

lz—3] <3 N —ES arg z S-TE
4 4

Imz

'~
J

W
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3.  [9marks: 2,2, 5]

Find the following indefinite integrals:

@ [6sinx (%) ax

7
® [—£= @
5-2p

PR &
(©) jl cos’ (2x+) dx



Year 12 Mathematics: Specialist 3C/3D 2011 Section One

[3 marks]
A cubic function, g(x), intersects the x-axis at (a, 0), (b, 0) and (c, 0) .

Another function, p(x), intersects g(x) in three places.
The coordinates of two of these points are shown on the graph below.

! q(x)

p(x)

Use the information in the graph to define the shaded area in terms of definite integrals.



Year 12 Mathematics: Specialist 3C/3D 2011 Section One

5. [7 marks: 3, 4]

The line L has equationr=4i+3j—k+A{i+2j-2k).
The plane IT has equationr« (-i+j+k)=2.

(a) Find the position vector of the point of intersection between L and I1.

(b) The acute angle between L and IT is 6. Find sin 0.



Year 12 Mathematics: Specialist 3C/3D 2011 Section One

[6 marks: 3, 3]

% 1
Consider a 2 x 2 matrix, A= [1 J

() If A’ =aA+ BI where o and P are real numbers and I is the 2 x 2 unit matrix,
find o and B.

(b) Write A" in the form kA + ¢l where k and ¢ are real numbers and

I is the 2 x 2 unit matrix.



Year 12 Mathematics: Specialist 3C/3D 2011 Section One
8

7.  [6 marks: 2,2,2]

Letu=acisaandw=>b e’ B where a and b are real numbers and —n < a <7 and

—n<B<m.

(a) State the modulus and argument of u x w.

: . B
(b) Given that u and w are the two roots of the equationz = k, find:

(i) the relationship between a and b

(ii) the relationship between a and f.

. . 2
(c) Given that u and w are the two roots of the equation pz + gz +r= 0,
where p, g and r are non-zero real numbers, find:

(i) the relationship between a and b

(i) the relationship between a and B.
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3 Year 12 Mathematics: Specialist 3C/3D 2011 Section Two

8.  [7marks: 2,3, 2]

The position vectors of the points P and Q are -2i+2j-3 k and6i+4j+5k
respectively.

(a) Find the position vector of K, the mid-point of the line joining P and Q.

The plane I is the perpendicular bisector of the line joining the points P and Q.

l( (b) Find the vector equation of the plane II.

(c) Find the acute angle the plane IT makes with the x-y plane.



Year 12 Mathematics 3C/3D 2011 Section Two

9.  [8 marks: 2,4,2]

: = 2 y
A curve has equation T+ —x —4e +1=0

(a) Find the exact value of the vertical intercept (y-intercept) of this curve.

(b) Use an analytical method to find %

(c) Verify that the curve has a stationary point at its vertical intercept.



Year 12 Mathematics: Specialist 3C/3D 2011 Section Two

10.

[8 marks: 3, 5]

A cool room for storing food is refrigerated so that the temperature in the room, F,
in degrees Celsius, at ¢ hours after midnight, is given by the formula

F=—4cos1t—(i—2_—32 for0<r <24

(a) Show that F experiences fluctuations that are similar to a particle undergoing
simple harmonic motion.

(b) The refrigeration system automatically switches on when the rate of change of
temperature, with respect to time, is greater than or equal to 0.5°C. When the rate of
change of temperature, with respect to time, is less than 0.5°C per hour it automatically
switches off again. Find the actual times (e.g. 2.17 a.m.), to the nearest minute, at '
which the system switches on and then switches off, during a 24 hour period.



Year 12 Mathematics 3C/3D 2011 Section Two

11. [7 marks: 1,1,2,1,2]
A triangle ABC is shown on the grid below with A(0, 2), B(4, 2) and C(3, 1).

y

(€3]

-

(69

-

No

(8]

-

(O]

(a) On the same grid, sketch the image AA'B'C, after a transformation that rotates
each point of the original triangle through 90° anti-clockwise about the 0r1g1n

(b) Also, sketch the image AA"B"C", when AA'B'C' is subjected to a shear transformatibn,
of factor 2, in the y-direction.



7 Year 12 Mathematics: Specialist 3C/3D 2011 Section Two

11.  (c) Determine the single 2 x 2 matrix that will map AABC directly onto AA"B"C".

(d) Find the area of each triangle drawn on the grid.

2 ;
(e) The matrix (6 3} , when used as a transformation matrix, will map all of

the points in AABC onto a straight line. Give the Cartesian equation of that line.



Year 12 Mathematics 3C/3D 2011 Section Two 8

12. [11 marks: 2, 4; 5]

The diagram below shows an isosceles triangle with two sides both x cm and the included
angle 20 radians.

| Xcm

20

Xxcm

(a) If the perimeter of the triangle is fixed at 100 cm.
50-x

(i) Prove thatsin 6 =
x

(ii) Find the exact value(s) of x and 6 when the area of the triangle is a maximum.



Year 12 Mathematics: Specialist 3C/3D 2011 Section Two

9
12.
‘,

(b) The perimeter of the triangle is no longer fixed at 100 cm.

The sides with length x cm are increasing at a constant rate of lcm per minute.
The included angle is increasing at a constant rate of 0.1 radians per minute.
Find the exact rate at which the area of the triangle is increasing

whenx=10cmand 0 = Zg— radians.



Year 12 Mathematics 3C/3D 2011 Section Two 10

13.  [7 marks: 2,2, 3]
Three people, Andrew, Benjamin, and Charles, kick a soccer ball to each other. There is a

probability of % that Andrew will kick the ball to Benjamin, there is a probability of —2— that

Benjamin will kick the ball to Charles and there is probability of % that Charles will kick

the ball to Andrew. Assume that each person does not kick the ball to himself. This
information is summarized in a transition matrix

From
A B C
A (0 % 3
- 1 2
T=To B |1 0 2|
3 3
c3Fs0

(a) Given that Andrew had the first kick, find the probability that Andrew will have
the ball back after the ball has been kicked twice (this includes Andrew’s first kick).

(b) Given that Benjamin had the first kick, find the probability that Charles will have the
ball after the ball has been kicked five times.



11

Year 12 Mathematics: Specialist 3C/3D 2011 Section Two

13,

(c) In the long term, who is most likely to end up with the ball? Justify your answer.
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14.  [7 marks: 3, 2, 2]

In a chemical process, the quantity of an enzyme (Q mg) is modelled by the equation

dgg_ =(200 — Q) x t where ¢ is time in hours.

(a) Use integration to find an expression for O in terms of 7.

(b) If the initial amount of the enzyme is 1000 mg, how much remains after 3 hours?

(c) Show clearly why the long term quantity of the enzyme is not dependent
on its initial amount.



13
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15.

[6 marks]

5
5 f 1
Use the substitution x = —sin 8, to evaluate exactly f —dx.
2 0 V25— 4x?

Show clearly each step of your working.



Year 12 Mathematics 3C/3D 2011 Section Two 14

16.  [6 marks]

A particle P moves in the x-y plane. Its equation of motion is given by:

d ] dx .. : :
& —9sin (2f) and = = cos (f), where ¢ is time in seconds. Given that the particle P starts

from the point (0, 0), find the Cartesian equation of the path traced by this particle.



15

17.

Year 12 Mathematics: Specialist 3C/3D 2011 Section Two

[6 marks]

Prove that (1 + cos 20 + i sin 26)n = 2"cos "0 (cis nB ).



Year 12 Mathematics 3C/3D 2011 Section Two

16

18. [7 marks]

Using mathematical induction, prove that, for all counting numbers, 7,
2n (2n+ 1)(2n - 1) is divisible by 6.
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Solutions

1. [Smarks: 2,3]

A complex number, z=a — i, where a is a real number.

(a) Give iz in rectangular form.

(b) Evaluate gif =8+ 6 i

iz=1i(a-i)=1+ai 4
iz=1-ai 4
(a—i)2=a2—2ai+i2
= (a*—1)-2ai v
Hence:
(a*—1)—2ai = 8+6i 4
a=-3 v

2. [4 marks]

Sketch, on the complex plane provided below, the region defined by

|z-3] <3

T I
N —Zﬁargz < —

4

————————————————

Rez

vy



Solutions

[9 marks: 2,2, 5]

Find the following indefinite integrals:

(a) jésinx(ez‘””) dx

j6sinx(e2cosx) dx =,—3J‘—2sinx(ezcosx) dx v

= 32°%% 4 C, v
7
) [—L— dp
5-2p
7 _
j pzdp:ij 4p2dp d
5-2p —475_-2p
= %In|5-—2pz| +C v

— cos3 T
© jl cos (2x+3) dx

jl —cos3(2x +§) dx = jl —cos(2x +§) X cosz(Zx + g) dx
= Il —cos(2x + g) fl— sin? (2x + g)] dx
= [1-cos(2x + -733) + cos(2x + g) sin® (2x + 33‘-)] dx
== % sin(2x + g) e -12- f2cos(2x + g) sin’ (2x + g)] dx
v v

= — lsin(2x+—7£) + lsin3(2x+—73) +C
2 3" 6 3

v




Solutions

4.  [3 marks]
A cubic function, g(x), intersects the x-axis at (a, 0), (b, 0) and (c, 0) .

Another function, p(x), intersects g(x) in three places.
The coordinates of two of these points are shown on the graph below.

¥ q(x)

px)

Use the information in the graph to define the shaded area in terms of definite integrals.

Area= ]i‘q(x) dx + ]f-p(x) dx + jq(x) dx
a d S

v v v

OR

b A 7
Area= [q(x) dx - [[q(x) dx - [ p(x) dr]

v v v




Solutions

[7 marks: 3, 4]

The line L has equationr=4i+3j—k+A{i+2j-2K).
The plane IT has equationre (i +j+k)=2.

(a) Find the position vector of the point of intersection between L and IT.

Substitute equation of L into equation of IT:

44N -1

342A0 [of 1 | =2

-1-2x1) {1
= 4-A+3+20-1-21=2

o=,

Hence, point has position vector=—-5j+ 7 k.

(b) The acute angle between L and IT is 6. Find sin 6.

1 -1
2 |ef 1
-2 1
cos (90 - 6)° =abs >
1 -1
2 |le|]| 1
-2 1
sin 6 = abs{ = }
3><\/§
v v

Angle between L and normal to plane = (90 — 6)°.




Solutions

6. [6 marks: 3, 3]

3 1
Consider a 2 x 2 matrix, A= (1 J

(a) IfA” = oA + BI where o and B are real numbers and I is the 2 x 2 unit matrix,

find a and B.
A2= 10 2 v
2 2
10 2 30« B 0
Hence = +
Z Z o —-a 0 B
= a=2and =4 vV

(b) Write A" in the form kA + cI where  and ¢ are real numbers and

I is the 2 x 2 unit matrix.

AP=2A+4T
=2(A +20)
4 2
At =12A +21)] v
= 4(A” + 4A +4T)
— 4(2A + 41 + 4A + 41) v
= 24A + 321 v




Solutions

7. [6 marks: 2,2, 2]

Letu=acisaandw="5b e’ B where a and b are real numbers and —w <a <7 and

—-n<B<T.

(a) State the modulus and argument of u x w.

Modulus=a x b =ab v

Argument = o — f. v

: .2
(b) Given that u and w are the two roots of the equation z = £, find:

(1) the relationship between a and b

a=b v

(1) the relationship between a and f.

a—-B= == v

. . 2 .
(c) Given that u and w are the two roots of the equation pz + gz +r=0,
where p, g and r are non-zero real numbers, find:

(1) the relationship between a and b

a=b v

(i) the relationship between a and p.

B +B=0 v
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Solutions

8.  [7marks: 2,3, 2]

The position vectors of the points P and Qare —2i+2j-3kand6i+4j+5k
respectively.

(a) Find the position vector of K, the mid-point of the line joining P and Q.

6 -2 8 4
PQ=|4|-| 2 |=|2]|=2|1].
5 -3 8 4
K is the midpoint of PQ.
Then OK = OP + %PQ v
-2 4 2
=2 |+|1]|=|3]. 4
-3 4 1

The plane IT is the perpendicular bisector of the line joining the points P and Q.

(b) Find the vector equation of the plane IT.

Required plane passes through K and is perpendicular to PQ.
4
Hence, a vector normal to plane = | 1 |. v
4
4 (2) (4
Equation of required planeisre |1 |=[3 |+ | 1| ¥V
4 1 4
4
re|1|=15. 4
4

(c) Find the acute angle the plane IT makes with the x-y plane.

Angle between IT and the x-y plane
4 0
= angle between | 1 | and | 0 |. v
4 1
=45.9°. v
angle¢[4,1,41,[8,8,11) -
43. 86825879




Solutions

[8 marks: 2,4, 2]

. — 2 y
A curve has equation ¢ ¥ + 7 TF —x" —4¢ +1=0

(a) Find the exact value of the vertical intercept (y-intercept) of this curve.

x=0,¢ +é -4 +1=0

26 =1 v
y=-In2 v

(b) Use an analytical method to find Zx_y

e ¥ (f’fy—+1)+ e? % (d—y——l)—2x—4e = =
dx dix dx
v v v

%(ey“c +e’ 7 —4ey)=2x—— T

dy  2x—e’ T 4ed

P G e Pl

(¢) Verify that the curve has a stationary point at its vertical intercept.

When x =0, v
dy _ —er+e
dx ¥ 4 oY _4e”
=3 Y _ 0 v
dx
Hence, when x = 0, % = 0 and the curve has a stationary point.




Solutions 4

10.  [8 marks: 3, 5]

A cool room for storing food is refrigerated so that the temperature in the room, F,

in degrees Celsius, at ¢ hours after midnight, is given by the formula
F=—4coszt—(t_—3) forO0<r <24

(a) Show that F' experiences fluctuations that are similar to a particle undergoing
simple harmonic motion.

F=—-4cos w—3)
iz1————4sinn(t—3)><7t—=zt—sm7t(t_3) v
t i 12 3 12
2
LI 1 k) 0. v
dt 3 12 12
2
_ T s n(t-3)
36 12
2
:_(n_j I 4
12
Which is of the form of a particle undergoing SHM.

(b) The refrigeration system automatically switches on when the rate of change of
temperature, with respect to time, is greater than or equal to 0.5°C. When the rate of
change of temperature, with respect to time, is less than 0.5°C per hour it automatically
switches off again. Find the actual times (e.g. 2.17 a.m.), to the nearest minute, at
which the system switches on and then switches off, during a 24 hour period.

T (f—3)
12

1

T
= e== (5
3

From graph 9;5 >0.5

/—\ (Method clearly shown v)

A \ s 4.9013 <7< 13.0987

/ 24 v 94

Hence, refrigerator turns on at

4.54 am ; turns off at 1.06 pm
v v

Intersect
xc=4.9013384 vc=0.5

[y1=lt/3-sin(yt-(x—3)/12), v2=0.5 ]
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Solutions

11

[7 marks: 1,1,2,1, 2]

A triangle ABC is shown on the grid below with A(0, 2), B(4, 2) and C(3, 1).

Y

B

5
J

1
A
p
1
}c,
e )

/

Cll1

2‘\

N

5 4 -3grp

-1

/

b

N

CJ

|
!

A"

NN

(€3]

(@) On the same grid, sketch the image AA'B'C, after a transformation that rotates
each point of the original triangle through 90° anti-clockwise about the origin.

W EE

=2 =2
8 4

=1
3

]

Fe

AA'B'C' plotted and drawn

v

(b) Also, sketch the image AA"B"C", when AA'B'C' is subjected to a shear transformation,

of factor 2, in the y-direction.

[19—2—2—1
21]le 4 3

}

-2 -2
o

=i
1

]

A A"B"C" plotted and drawn




Solutions

11.  (c¢) Determine the single 2 x 2 matrix that will map AABC directly onto AA"B"C".

B ) I

(d) Find the area of each triangle drawn on the grid.

All three triangles each have area = 2 square units. v

2 1
(e) The matrix (6 3] , when used as a transformation matrix, will map all of

the points in AABC onto a straight line. Give the Cartesian equation of that line.

2 1)(0 4 3) (2 10 7 P
6 3)2 2 1 6 30 21

Equation of line passing through

(2, 6), (10, 30) and (7, 21) is y = 3x. v




Solutions

12. [11 marks: 2, 4; 5]

The diagram below shows an isosceles triangle with two sides both x cm and the included
angle 20 radians.

Xcm

20

Xxcm

(a) If the perimeter of the triangle is fixed at 100 cm.

(i) Prove that sin 6 = 0-x .
%
B
o BC =100 —2x cm.
<om K Since, triangle is isosceles, £ BAK =0
-
andBKZ%(lOO—?.x):SO—x. v
A c ,
Xom Hence in AAKB, sin 6 = oLl ) v
X

(ii) Find the exact value(s) of x and 6 when the area of the triangle is a maximum.

AK = /x> = (50-x)* =10/x-25 v .
( ) simplify ¢y x2-(56-)2 )

1
Hence, Area 4 = EX (100 — 2x) x 10/x =25 180/ x-25
=5 (100 — 2x) m v fMax({SC108-22 3 x-25 yx)
{ 2588. \/-3_ 168 }
MaxValue= yX=—
Use fMax command on CAS calculator 9 3

100 129,
Hence, 4 is max when x = — cm v 3 *
_ 3
1 160
= snf=- = 6=2L. v - 3
2 6 s Xy |
P
L
)
h
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(b) The perimeter of the triangle is no longer fixed at 100 cm.

The sides with length x cm are increasing at a constant rate of 1cm per minute.

The included angle is increasing at a constant rate of 0.1 radians per minute.
Find the exact rate at which the area of the triangle is increasing

whenx=10cmand 0 = —763 radians.

Leta =26
Area A = %Xxxxxsina
¢
= lx sin o, 4
2

Differentiate implicitly with respect to time #:

dA dx . 1 2 da

— =x —sino+ —x coso —. vV

dt dt 2 dt
Whenx=10,a=£,£{=1,@=0.l: 2

37 dt dt
%:10x1x‘_/§i+l ><100><l x 0.1
dt 2 2 2

=53 + % cm’ per minute 4




9 Solutions

13.  [7 marks: 2,2, 3]

Three people, Andrew, Benjamin, and Charles, kick a soccer ball to each other. There is a

— : - )
probabi_lity of % that Andrew will kick the ball to Benjamin, there is a probability of g that

Benjamin will kick the ball to Charles and there is probability of }’1— that Charles will kick

the ball to Andrew. Assume that each person does not kick the ball to himself. This
information is summarized in a transition matrix

From

A B C

s [0 & £
T=To B |+ 0 %|
clizo

(a) Given that Andrew had the first kick, find the probability that Andrew will have
the ball back after the ball has been kicked twice (this includes Andrew’s first kick).

L (0P (3

e e 1
$30) Bk

Hence required probability = _2_76 v

(b) Given that Benjamin had the first kick, find the probability that Charles will have the
ball after the ball has been kicked five times.

0 2 1Y (1 1 6

5 5 3 40 40 240
=1 2| =z 5 1 v

T 4 0 3 64 16 48

£ g 1 31

4 5 320 80 20

Hence required probability = % v




Solutions

10

13.

(c) In the long term, who is most likely to end up with the ball? Justify your answer.

0 2 MO0 44 4
S 3 15 15 15
0 ls g 2| =2 2 1
4 3 3 3 3
303 2 2 2
4 5 0 5 5 5
v

In the long term:

Andrew has a 0.2667 chance of ending up with the ball.
Benjamin has a 0.3333 chance of ending up with the ball.
Charles has a 0.4 chance of ending up with the ball.

Hence, Charles is the most likely person to end up with the ball.

v

v




11 Solutions

14. [7 marks: 3, 2, 2]

In a chemical process, the quantity of an enzyme (Q mg) is modelled by the equation

g _

= (200 — Q) x t where ¢ is time in hours.

(a) Use integration to find an expression for Q in terms of .

d_Q = — X
- (200 — Q) x ¢
J-_____C?_Q____ = J.t dr v
(200-0)
2
—1n(200—Q)=-’2—+c. v
200 - J= Ae_%
Q=200 - Ae_% v

(b) If the initial amount of the enzyme is 1000 mg, how much remains after 3 hours?

1000=200-4 = A=-800 v
0(3) =200 + 800e ©? = 208.9 mg v

(c) Show clearly why the long term quantity of the enzyme is not dependent
on its initial amount.

2

t
Since Q =200 — de 2

t2
Ast— o, de 2 — 0and Q — 200. v
Clearly the final amount 200 mg is independent of Q(0). v
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15.  [6 marks]

|
—

5
Use the substitution x = = sin 6, to evaluate exactly J. —_—dx.
2 V25 -4x2

0

Show clearly each step of your working.

x=—5—sin9 = dx=§cosed6 v
2 2
x=0 = 06=0
x=> = sne=1 = =2 v
4 2 6
%
1=j S
0425 4x?
lé[
:j 1 2 XSC(;SE)Q,9 v
. ]
\/25_4(551n6j
2
%
:i“- cos0 40
2 O\ES—(ZSSinz())
%
:éj cosO 40 %
29 5,/1-(sin0)?
%
_ _S_J- cos0 40
2 4 5cos6
§
=lj1de
20
1 3
2[ ]o
= 7
12

o AMEYTDACE



13

Solutions

16.

[6 marks]

A particle P moves in the x-y plane. Its equation of motion is given by:

v _ 2 sin (2¢) and 88 _ cos (7), where ¢ is time in seconds. Given that the particle P starts

from the point (0, 0), find the Cartesian equation of the path traced by this particle.

%=2sin(2t) = y=-cos(2)+A

t=0,y=0 >A=1= y=-cos(2)+1 a4

%:cos(t) = x=sin(®)+B

t=0,x=0 =>B=0 = x=sin() vV

Buty =] 21—2sin2(t)]+1 v
=2x v

QSQFE NFYT PAGF
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17.

[6 marks]

Prove that (1 + cos 28 + i sin 29)n =2"cos "0 (cis nB ).

LHS =(1 + cos 26 + i sin 29)”
=(2cos O +isin26)"
=(2cos 0 +i2 sinecose)n
=[2cos0 (cos O +isin 6) ]’
=2"cos" 0 (cos O +isin O)n
=2"cos" 0 (cis 9)n

=2"cos "0 (cis nB)
=RHS

L Y

CEE ANMECVYT DA
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18.  [7 marks]

Using mathematical induction, prove that, for all counting numbers, »,

2n (2n +1)(2n - 1) is divisible by 6.

LetP(n)=2n(2n+ 1)(2n-1)
Forrn=1: P(1)=23)(1)

=6 which is divisible by 6.
Hence, conjecture is true for n = 1.

Assume that conjecture is true for n = k:
Thatis, 2k (2k+1)(2k-1) isdivisible by 6.
= 2k (2k+1)(2k - 1) = 6m for some counting number .

Forn=Fk+1:
P(k+1)=2(k+ 1D2k+3)2k+ 1)

= 2k +2)(2k +3)(2k + 1)
=2k 2k +3)2k+ 1) + 2 2k + 3)2k + 1)

=2k 2k + 1)(2k—1+4)+2 2k +3)2k+1)

=2k 2k + )2k — 1)+ 4 x 2k 2k + 1) + 2 2k+3)2k+1) v

=2k 2k+ 1)2k-1)+2 2k + 1)[4k + 2k + 3]
= 2k 2k + 1)(2k — 1) + 2 2k + 1)(6k +3)
=2k 2k + 1)(2k— 1)+ 6 2k + )2k + 1)
=6m+6(2k+ 1)2k+ 1).

Hence, P(k + 1) is divisible by 6.

Hence, if the conjecture is assumed to be true for n = £,
then it must be true forn =%k + 1.

Since the conjecture is true forn =1,
using the result just shown, it must then be true forn=1+1=2.
Since it is true for n = 2, it must be true forn=2+1=3.

~ Since it is true for n = 3, it must be true for n =3 + 1 =4, and so on.

Hence, the result must be true for all counting numbers 7.
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